skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Deshmukh, Arundhati P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Single-crystal layered perovskite heterostructures provide a scalable platform for potentially realizing emergent properties recently seen in mechanically stacked monolayers. We report two new layered perovskite heterostructures M2(PbCl2)(AMCHC)2(PbCl4)·2H2O (1_M where M = Na+, Li+; AMCHC = +NH3CH2C6H10COO‒) crystallizing in the chiral, polar space group C2. The heterostructures exhibit alternating layers of a lead-chloride perovskite and an intergrowth comprising corner-sharing PbCl4(η2-COO)2 polyhedra with bridging equatorial chlorides and terminal axial oxygen ligands. Small alkali metal cations and water molecules occupy the cavities between the polyhedra in the intergrowth layer. The heterostructures display wide bandgaps and two closely spaced excitonic features in their optical spectra and strong second harmonic generation. The calculated band structure of 1_Na features a Type-I quantum-well structure, where the electron-hole correlation function corresponding to the lowest excited state points to electron-hole pairs localized within a single inorganic layer (intralayer excitons), as seen in typical layered halide perovskites. In contrast, calculations show that 1_Li adopts a Type II quantum-well structure, with electrons and holes in the lowest-excited state residing in different inorganic layers (interlayer excitons). Calculations on model complexes suggest that these changes in band alignment, between Type-I and Type-II quantum-well structures, are driven by the placement of the alkali metal and the orientation of the water molecules changing the electrostatic potential-energy profiles of the heterostructures. Thus, this study sets the stage for accessing different alignments of the perovskite and intergrowth bands in bulk perovskite heterostructures that self-assemble in solution. 
    more » « less
    Free, publicly-accessible full text available November 5, 2026
  2. Cryo-electron microscopy has delivered a resolution revolution for biological self-assemblies, yet only a handful of structures have been solved for synthetic supramolecular materials. Particularly for chromophore supramolecular aggregates, high-resolution structures are necessary for understanding and modulating the long-range excitonic coupling. Here, we present a 3.3 Å structure of prototypical biomimetic light-harvesting nanotubes derived from an amphiphilic cyanine dye (C8S3-Cl). Helical 3D reconstruction directly visualizes the chromophore packing that controls the excitonic properties. Our structure clearly shows a brick layer arrangement, revising the previously hypothesized herringbone arrangement. Furthermore, we identify a new non-biological supramolecular motif—interlocking sulfonates—that may be responsible for the slip-stacked packing and J-aggregate nature of the light-harvesting nanotubes. This work shows how independently obtained native-state structures complement photophysical measurements and will enable accurate understanding of (excitonic) structure–function properties, informing materials design for light-harvesting chromophore aggregates. 
    more » « less
  3. Excitonic chromophore aggregates have wide-ranging applicability in fields such as imaging and energy harvesting; however their rational design requires adapting principles of self-assembly to the requirements of excited state coupling. 
    more » « less
  4. Molecular aggregates with long-range excitonic couplings have drastically different photophysical properties compared to their monomer counterparts. From Kasha's model for one-dimensional systems, positive or negative excitonic couplings lead to blue or red-shifted optical spectra with respect to the monomers, labeled H-and J-aggregates, respectively. The overall excitonic couplings in higher dimensional systems are much more complicated and cannot be simply classified from their spectral shifts alone. Here, we provide a unified classification for extended 2D aggregates using temperature dependent peak shifts, thermal broadening, and quantum yields. We discuss the examples of six 2D aggregates with J-like absorption spectra but quite drastic changes in quantum yields and superradiance. We find the origin of the differences is, in fact, a different excitonic band structure where the bright state is lower energy than the monomer but still away from the band edge. We call this an “I-aggregate.” Our results provide a description of the complex excitonic behaviors that cannot be explained solely on Kasha's model. Furthermore, such properties can be tuned with the packing geometries within the aggregates providing supramolecular pathways for controlling them. This will allow for precise optimizations of aggregate properties in their applications across the areas of optoelectronics, photonics, excitonic energy transfer, and shortwave infrared technologies. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)